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Abstract. We revise the Thomas-Fermi approximation for describing vortex states in Bose condensates
of magnetically trapped atoms. Our approach is based on considering the � → 0 limit rather than the
N → ∞ limit as Thomas-Fermi approximation in close analogy with the Fermi systems. Even for relatively
small numbers of trapped particles we find good agreement between Gross-Pitaevskii and Thomas-Fermi
calculations for the different contributions to the total energy of the atoms in the condensate. We also
discuss the application of our approach to the description of vortex states in superfluid fermionic systems
in the Ginzburg-Landau regime.

PACS. 03.65.Sq Semiclassical theories and applications – 03.75.Lm Tunneling, Josephson effect,
Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations

1 Introduction

The discovery of Bose-Einstein condensation in trapped
alkali-metal gases at ultra-low temperature [1–3] has de-
veloped a huge amount of experimental and theoretical
investigations. The experimental conditions are such that
the atomic gas is at very low density and that the in-
teractions can be parametrized in terms of a scattering
length a. In this situation a mean-field description through
the Gross-Pitaevskii equation (GPE) [4,5] is able to give,
at least at low temperature, a precise description of the
atomic condensates and their dynamics [6–9].

One important question concerns the superfluid char-
acter of the Bose condensates. Among other properties,
the existence of quantum vortices is a signal of the super-
fluidity. The possibility of trapped quantized vortices was
one of the primary motivations of the GP theory [4,5] and
some amount of theoretical work about this topic has been
developed during the last years [6,7,9–12]. The experimen-
tal evidence of such quantized vortices has recently been
verified [13,14].

Since the number N of atoms involved in the con-
densate is generally large, it is natural to think that
the Thomas-Fermi (TF) approach can be applied exten-
sively in some aspects of the Bose-Einstein condensation
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in traps. This TF limit is usually identified with the limit
of number of atoms N going to infinity rather than to
be interpreted as the � → 0 limit as it happens in the
case of Fermi statistics. Recently, the TF approximation
for the ground state of Bose-Einstein condensates of mag-
netically trapped atoms has been discussed as the � → 0
limit [15]. From this point of view the TF kinetic energy,
which is dropped in the N → ∞ limit of the ground-state
calculation, can be obtained for any number of particles.
In this � → 0 limit, a good agreement between the GP
and TF kinetic energies is found even for low and inter-
mediate number of particles. With the interpretation of
the TF approach as the � → 0 limit, it is also possible to
perform semiclassical TF calculations for the ground state
of Bose-Einstein condensates of atoms with negative scat-
tering length (7Li atoms) and to compute the excitation
energy of collective monopole and quadrupole oscillations
where the kinetic energy of the ground state of the con-
densate plays a crucial role [15].

The TF limit considered as N → ∞ limit has also been
applied to the description of vortex states [10,11,16,17].
In this case it is assumed that the radial and axial ki-
netic energies can be neglected, and only the rotational
kinetic energy is retained [16]. This approximation, how-
ever, gives a bad description of the vortex-core region. A
better description of this region in the limit of large N can
be achieved by splitting the condensate wave function into
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a product of a slowly-varying envelope, which is obtained
by completely neglecting the kinetic energy, times the so-
lution of the GPE describing a vortex in homogeneous
matter [18]. In contrast to these large-N methods, in this
paper, we will again consider the TF approximation as the
� → 0 limit in order to describe the vortex state semiclas-
sically. In addition to the formal aspects, this approach
has the practical advantages mentioned above, i.e., that
one can calculate the kinetic energy, that it can therefore
be used also in the attractive case, and that it works well
also in the case of relatively few particles.

The experimental and theoretical achievements in
Bose-Einstein condensation have also triggered the in-
vestigation of trapped Fermi gases at very low temper-
atures [19–21]. One of the most important goals of the
experiments is to reach the BCS transition to the super-
fluid phase, associated with the appearance of a macro-
scopic order parameter of strongly correlated Cooper pairs
in dilute gases of trapped fermionic atoms. Several theo-
retical studies about this topic have recently been devel-
oped [22,23]. In the case where the critical temperature
is much higher than the spacing between the levels in the
trap, the macroscopic order parameter can be obtained
through the Ginzburg-Landau equation (GLE) [24], which
is formally equivalent to the GPE. In a recent publi-
cation [25] also vortex states were discussed within the
framework of the GLE. As a second application of our TF
approach we will briefly discuss vortex states in a super-
fluid gas of trapped fermionic atoms. Due to the analogy
between the GPE and the GLE our semiclassical approach
can immediately be transferred to this problem.

The paper is organized as follows: in the second section
we establish the TF theory projected on states of defined
z-component of the angular momentum and apply it to de-
scribe vortex states of a non-interacting Bose condensate.
In the third section we include the interaction among the
atoms in the trap and compare our semiclassical predic-
tion with the results obtained from the quantal solution of
the GPE for several typical examples. The fourth section
is devoted to the discussion of vortex states in superfluid
trapped Fermi systems. Our conclusions are laid out in
the last section.

2 The Thomas-Fermi approximation to static
vortex states

We start by considering states having a vortex line along
the z-axis and all the atoms flowing around it with quan-
tized circulation. The order parameter can be written in
the form [6,11]

Φ(r) = φ(r⊥ , z) eiκϕ , (1)

where r⊥ and z are the radial and axial coordinates, ϕ is
the angle around the z-axis, κ is an integer, and φ(r⊥ , z) =√

ρ(r⊥ , z), ρ(r⊥ , z) being the density. The vortex state has a
tangential velocity v = �κ/(mr⊥) where κ is the quantum
of circulation, and the angular momentum along the z-axis

is N�κ. The function φ(r⊥ , z) is obtained as the solution
of the following non-linear Schrödinger equation
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φ(r⊥ , z) = µ φ(r⊥ , z) , (2)

which is the GPE for the static vortex state problem. In
equation (2), Vext is an external potential which for sim-
plicity we have considered to be a spherical harmonic os-
cillator (HO) with frequency ω,

Vext(r) =
1
2
mω2(r2

⊥ + z2). (3)

The coupling constant is given by g = 4π�
2a/m with m

the atomic mass and a the s-wave scattering length.
For the remaining part of this section, we will concen-

trate on the non-interacting case, i.e., V (r) = Vext(r). The
effect of interactions will be considered in the next section.
For non-interacting particles one recovers the case of a sta-
tionary Schrödinger equation for the harmonic oscillator
potential, which is solved by

Φκ(r) =

√
N

π3/2 κ! a3
HO

(
r⊥

aHO

)κ

e−(r2
⊥+z2)/(2a2

HO) eiκϕ

(4)
with the HO length aHO defined by aHO =

√
�/(mω). The

corresponding energy eigenvalue is given by

µ =
(

3
2

+ κ

)
�ω . (5)

To derive the TF approximation to the quantal solution
of the non-interacting vortex state (4), we start from the
complete set of eigenfunctions of p̂2, p̂z and L̂z

〈r|kz , k⊥ , κ〉 = Jκ(k⊥r⊥) eiκϕ eikzz, (6)

which are normalized to∫
d3r 〈r|kz , k⊥ , κ〉 〈k′

z , k
′
⊥ , κ′|r〉 =

4π2

k⊥
δ(k⊥ − k′

⊥) δ(kz − k′
z) δκκ′ . (7)

At lowest order in � (i.e., at TF level), the corresponding
single-particle propagator [26] can be written as

Cβ(r, r′) = 〈r|e−βĤ |r′〉
≈

∑
κ

∫
dkz dk⊥

4π2
k⊥ Jκ(k⊥r⊥)Jκ(k⊥r′⊥) eiκ(ϕ−ϕ′)

× eikz(z−z′) e−β[V (R)+�
2(k2

⊥+k2
z)/(2m)] , (8)

where R = (r+r′)/2. Equation (8) has been obtained un-
der the assumption that all the gradients of the potential
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can be neglected, which is the usual hypothesis of the TF
theory. From now on we restrict ourselves to some given
value of κ. The spectral density matrix is easily obtained
as the inverse Laplace transform of the propagator [26]:

gµ
κ(r, r′) = L−1

β→µCβ
κ (r, r′)

=
∫

dkz dk⊥
4π2

k⊥ Jκ(k⊥r⊥)Jκ(k⊥r′⊥) eiκ(ϕ−ϕ′)

× eikz(z−z′) δ

(
µ − V (R) − �

2
(
k2
⊥ + k2

z

)
2m

)
· (9)

Its local part, gµ
κ(r) ≡ gµ

κ(r, r), is proportional to the den-
sity of the Bose condensate. After performing the k⊥ inte-
gral we obtain for the density

ρκ(r) = Ncκgµ
κ(r)

=
mNcκ

2π2�2

∫ k0(r)

0

dkz J2
κ

(√
k2
0(r) − k2

z r⊥

)
θ[µ − V (r)],

(10)

where

k0(r) =

√
2m[µ − V (r)]

�
, (11)

and cκ is the normalization constant.
As it is done for the ground state [15], cκ is determined

by imposing that (10) be normalized to N . Thus cκ is just
the inverse of the level density gκ(µ):

1
cκ

= gκ(µ) =
∫

d3r gµ
κ(r). (12)

The other quantity entering in the density of the Bose con-
densate, equation (10), is the chemical potential µ which
corresponds to the lowest eigenvalue of the GPE. In order
to determine the chemical potential µ, a requantization of
the TF approximation is necessary [15]. The need for a
requantization of the TF theory for individual states has
been recognized in reference [27] and our procedure of re-
quantization clearly follows what is proposed there. The
standard semiclassical quantization procedure is given by
the Wentzel-Kramers-Brillouin (WKB) method. However,
in order to have a more explicit formula, we apply here
the simplified method described in reference [15], which
becomes exact in the three dimensional HO case. Thus
for the non-interacting case we fix the chemical potential
to be equal to the GPE eigenvalue, equation (5).

To proceed further it is useful to write the Bessel func-
tion in equation (10) as a power series [28]:

Jκ(x) =
∞∑

i=0

(−1)i

i!(κ + i)!

(x

2

)κ+2i

· (13)

Using this result, performing the remaining kz integral,
and remembering the identity

∞∑
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) (
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)
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Fig. 1. Square root of the normalized TF (� → 0) density
and quantal wave function (GPE) for a non-interacting Bose
condensate with κ = 1 as a function of r⊥ for z = 0. The third
curve corresponds to equation (20). Wave function and radius

are given in HO units (a
−3/2
HO and aHO, respectively).

we obtain the following expression for the local spectral
density:

gµ
κ(r) =

mk0(r)
2π2�2

×
∞∑

j=0

(−1)j [k0(r)r⊥ ]2κ+2j

j!(2κ + j)!(2κ + 2j + 1)
θ[µ − V (r)] . (15)

For the non-interacting harmonic oscillator the integral
in equation (12) can be evaluated analytically, with the
result

1
cκ

=
1

�ω

∞∑
j=0

(−1)j [µ/(�ω)]2κ+2j+2

j!(2κ + j)!(2κ + 2j + 1)(2κ + 2j + 2)
·

(16)
Figure 1 displays the square root of the normalized TF
density (10) for κ = 1 along the r⊥ coordinate for z = 0,
where HO units have been used. In the same figure the
quantal wave function which describes the κ = 1 vortex
state [see Eq. (4)] is also plotted. As it can be seen from
equation (15), for r⊥ → 0 the semiclassical TF density goes
to zero in the same way as the quantum mechanical result,
i.e., ρκ(r) ∝ r2κ

⊥ . At the classical turning point [V (r) = µ]
the TF density goes to zero as ρκ ∝ [k0(r)]1+2κ. Thus the
turning point will be changed by the interaction only via
the change of the chemical potential µ.

The reader unfamiliar with the Thomas-Fermi ap-
proach may be worried about the locally relatively strong
deviations of the semiclassical density from its quantal
(GPE) counterpart. In this respect it should be remem-
bered that the TF densities must be considered in the
sense of distributions [26] [see e.g. the step function in
Eq. (10)] and, therefore, they only make sense when
used under integrals to calculate expectation values of
“slowly varying” operators. In fact, the � corrections to
the density (not considered here) still deviate much more
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strongly from the true quantal densities, since they contain
a square-root singularity at the classical turning point.
Nonetheless these � corrections, when used under inte-
grals, improve the results for cases where the gradients of
the potential are not too strong [29]. It has been found
in the past [15,26] that when used in this way the TF
approach (eventually with inclusion of � corrections) can
yield very accurate results for expectation values. The re-
lation of the TF approach with �

2 corrections to the WKB
approach has been discussed in reference [27].

The TF kinetic energy density can also be derived from
the spectral density matrix (9) as
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− �
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= [µ − V (R)] gµ

κ(R). (17)

Using equations (10, 17) it can easily be checked that the
expectation values of the kinetic and potential energies
fulfill the virial theorem as it is expected in the TF ap-
proach [30]. Thus due to our choice of the chemical po-
tential µ (5), our semiclassical TF approximation to the
vortex state in the non-interacting case exactly reproduces
the quantal expectation values of the kinetic and potential
energies in spite of the aspect of the semiclassical density
profile as compared with the quantal one.

It is easy to see that with the HO potential the argu-
ment of the Bessel function entering in the density cannot
become large:

k⊥r⊥ ≤ k0(r)|r| ≤ µ

�ω
=

3
2

+ κ . (18)

For example, in the case κ = 1 the argument becomes at
most 5/2, and already the first four terms of the expan-
sion (13) give an accuracy better than 0.5%. In the case
κ = 0, the result of reference [15] is recovered if one takes
only the first term of the expansion in the TF density,
equation (10).

For completeness we note that in the literature also
a different approach for projecting the semiclassical den-
sity matrix onto good angular momentum L2 and Lz can
be found [31]. Repeating the steps described there for
the projection onto good Lz only (i.e., essentially using
asymptotic expansions for the Bessel functions) one finds
the following expression for the Wigner transform of the
spectral density matrix:

gµ
κ(R,p) = � δ(Hcl − µ) δ(Lcl

z − �κ) (19)

with Hcl = p2/(2m) + V (R) and Lcl = R × p . From
this formula the density is easily obtained by integration
over p:

ρκ(R) =
mNcκ

4π2�2R⊥
θ

(
µ − V (R) − �

2κ2

2mR2
⊥

)
· (20)

The constant cκ is determined by the normalization con-
dition, which for the non-interacting case results in cκ =
2�

2ω2/(µ − κ�ω) = 4�ω/3 . The density profile corre-
sponding to equation (20) is also shown in Figure 1. From
this figure it is evident that equation (20) makes sense only
as a distribution for the calculation of expectation val-
ues and not for the calculation of local quantities like the
density itself. However, since the density given by equa-
tion (20) does not at all depend on the shape of the poten-
tial (except for the determination of the turning points),
this form seems difficult to be used for a self-consistent
calculation in the interacting case. Let us note that again
the virial theorem is fulfilled and expectation values of
operators can be obtained very accurately [31,32].

3 The interacting case

Let us now discuss the TF approximation to the quan-
tal solution of the GPE (2). Of course the semiclassical
formalism described in the previous section can still be
applied provided that the potential V (r) in the interact-
ing case is given by

V (r) = Vext(r) + gρ(r) . (21)

As it was mentioned before, the TF density correspond-
ing to the vortex state (10) depends on two independent
constants to be determined: the normalization cκ and the
chemical potential µ. In the interacting case, and follow-
ing the same strategy as in reference [15], we determine cκ

and µ by imposing that the TF density be normalized to
the number of particles N in the Bose condensate and that
the integrated level density

N I
κ(µ) =

∫
d3r

∫ µ

0

dµ′gµ′
κ (r)

=
∫

d3rθ[µ − V (r)]
k3
0(r)
2π2

×
∞∑

j=0

(−1)j [k0(r)r⊥ ]2κ+2j

j!(2κ + j)!(2κ + 2j + 1)(2κ + 2j + 3)

(22)

become equal to that of the non-interacting HO, which for
µ = (3/2 + κ)�ω is given by

NHO
κ =

∞∑
j=1

(−1)j (2κ + 2j)! (3/2 + κ)2κ+2j+3

j!(2κ + j)!(2κ + 2j + 3)!
· (23)

The strategy for the self-consistent solution in the inter-
acting case is now very simple. Instead of starting with a
fixed particle number N , it is convenient to choose some
value for Ncκ. Then we choose some initial value for µ.
For given Ncκ and µ we solve equation (15) for gµ

κ(r),
which is non-linear since also the right-hand side depends
on gµ

κ(r) through

k0(r) =

√
2m[µ − Vext(r) − gNcκgµ

κ(r)]
�

· (24)
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Then the integral (22) is evaluated and the result is
compared with the corresponding result for the non-
interacting harmonic oscillator, equation (23). If the level
number is too small (N I

κ < NHO
κ ), µ is increased, oth-

erwise (N I
κ > NHO

κ ) µ is decreased. This procedure is
iterated until N I

κ = NHO
κ . Finally the particle number is

obtained by evaluating the integral

N =
∫

d3r ρ(r) = Ncκ

∫
d3r gµ

κ(r). (25)

Before comparing the results obtained within our TF ap-
proach to the results from solving the GPE numerically,
let us briefly discuss two approximation methods which
have been developed for the case of large N . The first
one, known as the TF limit in the literature and discussed,
e.g., in references [10,11,16,17], is obtained by dropping
the kinetic energy part ekin coming from the radial and
axial motion and retaining only the rotational part erot of
the total kinetic energy, i.e., only derivatives with respect
to ϕ in equation (2). Under this assumption it is easily ob-
tained that the N → ∞ limit of the density of the vortex
state reads

ρ(r) =
1
g

(
µ − �

2κ2

2mr2
⊥

− 1
2
mω2

(
r2
⊥ + z2

))
. (26)

In this limit the density vanishes inside of r⊥min and out-
side of r⊥max, defined by the zeros of equation (26). The
chemical potential µ is obtained through the particle-
number condition. The formula (26) has the advantage
that it represents an analytic expression for ρ(r), but it
is clear that the result ρ = 0 inside a vortex core with
radius r⊥min is not realistic. We will call hitherto for-
mula (26) the N → ∞ TF limit.

The second approximation method, known as the
“method of matched asymptotics” (MA), was introduced
in reference [33] to describe the dynamics of vortices, and
used in reference [34] to calculate the energy of a static
vortex. We will follow here the simplified derivation for
the case of a straight vortex given in reference [18]. First
let us briefly review the description of a vortex state in
a system with Vext = 0. In this case it is useful to define
the asymptotic density ρ0 = µ/g and the healing length
ξ0 = �/

√
2mρ0g [10], and to write the condensate wave

function in the form

φ(r⊥ ) =
√

ρ0 fκ

(
r⊥
ξ0

)
=

√
µ

g
fκ

(√
2mµ

�
r⊥

)
. (27)

Inserting this expression into the GPE (2) with Vext =
0, one obtains the following differential equation for the
function fκ:

− 1
x

f ′
κ(x) − f ′′

κ (x) +
κ2

x2
fκ(x) + f3

κ(x) = fκ(x) . (28)

With the boundary conditions (for κ ≥ 1)

fκ(0) = 0 and lim
x→∞ fκ(x) = 1 (29)

this differential equation can be solved numeri-
cally [10,35]. Now we turn to the case of a trapped
system. In the limit of large N it is is clear that the
external potential Vext can be regarded as constant on
the length scale ξ0 corresponding to the size of the vortex
core. (More precisely, the condition which has to be
fulfilled reads Na/aHO � 1, as it is the case for the
N → ∞ TF approach.) Thus we obtain an approximate
description of the trapped system by replacing the chem-
ical potential µ by a local chemical potential µ − Vext(r).
Inside the classically allowed region [Vext(r) < µ] the
order parameter then takes the form

φ(r) =

√
µ − Vext(r)

g
fκ

(√
2m[µ − Vext(r)]

�
r⊥

)
. (30)

As before, the chemical potential µ is determined by the
particle-number condition.

Note that in the region far away from the vortex core,
i.e., for r⊥ � ξ0, one can expand fκ(x) in powers of 1/x.
Using equations (28, 29), one obtains

fκ(x) = 1 − κ2

2x2
− κ2(8 + κ2)

8x4
− · · · ≈

√
1 − κ2

x2
· (31)

Inserting this into equation (30) one immediately recovers
equation (26). However, this shows that equation (26) is
not valid for r⊥ � ξ0, i.e., inside the vortex core. Another
difference between equation (30) and equation (26) con-
cerns the behavior of the wave function at the outer clas-
sical turning point. In contrast to the usual N → ∞ TF
limit, the kinetic energy corresponding to the wave func-
tion (30) is not diverging, since the square-root

√
µ − Vext

in equation (30) is multiplied by the function fκ, which
is proportional to (µ − Vext)κ/2 near the classical turn-
ing point. Nevertheless it is not reasonable to use equa-
tion (30) to calculate the kinetic energy near the turning
point, since the decrease of the function fκ is just indicat-
ing that the local healing length ξ(r) = �/

√
2m(µ − Vext)

becomes large and that the approximation breaks down.
Now we proceed to a detailed numerical comparison

of the (� → 0) TF predictions with the exact quan-
tal values obtained from the GPE, equation (2). For
our numerical application we consider 87Rb atoms in a
spherical trap represented by a HO potential with length
aHO = 0.791 µm [9]. The s-wave scattering length is taken
as a = 100 a0 [6] where a0 is the Bohr radius. Table 1 col-
lects the chemical potential (µ), the total (etot), HO (eHO),
self-interaction (eself), and kinetic energies per particle for
vortex states of condensates with 100, 104, and 106 atoms
in the trap. The kinetic energy is split into the rotational
part (erot) and in the one corresponding to the radial and
axial motion (ekin). The numerical values displayed in Ta-
ble 1 show that our (� → 0) TF approach reproduces
very well the quantal eigenvalue (µ) as well as the total
energy per particle (etot) even for a small number of par-
ticles such as 100. The agreement between the quantal
and TF values improves when the number of particles in
the condensate increases, as it is expected. The HO and
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Table 1. Chemical potential (µ) and energy per particle (etot) and its different contributions in �ω units: harmonic oscillator
energy (eHO), interaction energy (eself), and kinetic energy split into its rotational (erot) and radial and axial (ekin) parts. The
parameters chosen correspond to a single-quantized vortex (κ = 1) in a spherical trap (aHO = 0.791 µm) containing 100, 104,
and 106 87Rb atoms (scattering length a = 100 a0). The results obtained from the GPE are compared with the results from the
(� → 0) TF approach and from two approximation methods for large N : the so-called N → ∞ TF method, equation (26), and
the method of matched asymptotics (MA), equation (30). Note that ekin is neglected in the N → ∞ TF limit and not accessible
within the matched-asymptotic approach.

N µ etot eHO eself erot ekin

GPE 2.74 2.62 1.34 0.12 0.480 0.686
� → 0 2.72 2.61 1.33 0.10 0.501 0.673

102

N → ∞ 1.88 1.59 0.87 0.29 0.438 0
MA 1.86 — 0.84 0.23 0.689 —

GPE 8.40 6.30 3.67 2.10 0.271 0.255
� → 0 8.28 6.19 3.62 2.09 0.350 0.130

104

N → ∞ 8.19 5.99 3.54 2.19 0.253 0
MA 8.23 — 3.57 2.17 0.272 —

GPE 50.18 35.93 21.53 14.26 0.087 0.059
� → 0 50.13 35.86 21.50 14.27 0.116 −0.024

106

N → ∞ 50.14 35.86 21.50 14.28 0.083 0
MA 50.14 — 21.50 14.27 0.086 —

the self-interaction contributions to the total energy are
also well reproduced by our semiclassical approach. For
very large numbers of particles (N = 106) the quantal re-
sults are also well reproduced by the N → ∞ TF limit,
equation (26), because the neglected contribution (i.e., the
kinetic energy due to the radial and axial motion ekin) is
very small. However, it should be pointed out that the key
assumption of this N → ∞ limit is not fulfilled, because
the kinetic energy of the radial and axial motion is still
of the same order as the rotational energy, as can be seen
from the quantal results (GPE) listed in Table 1. In fact,
even in the limit N → ∞ the ratio ekin/erot does not go
to zero (see Appendix). The method of matched asymp-
totics, equation (30), gives better results than the N → ∞
TF limit, equation (26), except in the case of small num-
bers of particles (N = 100), where both large-N methods
fail.

Concerning the kinetic energy some comments are in
order. First of all, we want to point out that the N → ∞
theory neglects (and in fact cannot access [15]) the contri-
butions coming from the radial and axial motion, so they
are not listed in Table 1. For a small number of atoms,
such as 100, our � → 0 limit is able to reproduce rea-
sonably well both, erot and ekin contributions to the total
kinetic energy per particle. When the number of the atoms
in the trap grows, the total kinetic energy per particle de-
creases and the agreement between the quantal result and
the TF prediction worsens for this quantity. This situa-
tion is also found in the ground-state case discussed in
reference [15] where the (small) quantal and TF kinetic
energies can differ by a factor two for a large number of
particles (see Tab. II of Ref. [15]). The reason for these
disagreements between the quantal and TF kinetic en-
ergies for large number of atoms in the condensate lies
in the fact that in this case the kinetic energy is domi-
nated by quantal corrections that are non-analytical in �

and consequently cannot be reproduced in a pure TF ap-
proximation [15]. A detailed comparison shows that the
(� → 0) TF theory systematically overestimates the rota-
tional part and underestimates the axial and radial parts
of the kinetic energy, the latter even becoming negative for
very large numbers of particles, although the total kinetic
energy remains always positive. The reason for this be-
havior is that the TF density is too high inside the vortex
core, as will be discussed below.

It should be pointed out that, as happens for the non-
interacting case, the virial theorem, which for the inter-
acting case reads [6]

2(ekin + erot) − 2eHO + 3eself = 0 , (32)

is also fulfilled in our TF approach to vortex states for a
Bose condensate in a spherical trap.

Figures 2–4 display the normalized order parameter
for 100, 104, and 106 atoms of 87Rb in the trap along
the radial axis r⊥ for z = 0. The dashed line corresponds
to the (� → 0) TF limit. For comparison we show the
corresponding order parameter obtained from the quan-
tal solution of the GPE (2) (solid line), which is obtained
through imaginary time step techniques [6], and the order
parameter obtained from the method of matched asymp-
totics, equation (30) (dashed-dotted lines). Looking at the
shape of the semiclassical (� → 0) compared with the
quantal order parameter one can see that the agreement
increases with the number of particles in the condensate,
as it happens in the TF approximation for the ground
state. The effect of the self-interaction that progressively
modifies the density profile of the condensate in the vor-
tex state with respect to the non-interacting case is also
followed by our semiclassical TF densities. Only inside the
vortex core (r⊥ ≈ 0) the agreement worsens with increas-
ing number of particles.
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Fig. 2. Normalized order parameter obtained from the GPE,
from the (� → 0) TF limit, and from the approximation of
matched asymptotics (MA) for large N [Eq. (30)], of an inter-
acting Bose condensate of 100 87Rb atoms in a spherical trap
with aHO = 0.791 µm in a vortex state with κ = 1 as a function
of r⊥ for z = 0 in HO units.
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Fig. 3. Same as Figure 2, but for 104 atoms in the trap.

This can easily be understood by looking at the cor-
responding self-consistent potentials shown in Figure 5.
The main assumption of our semiclassical TF theory is
that gradients of the potential can be neglected. This as-
sumption becomes more and more justified with increas-
ing number of particles, except in the vicinity of the z-axis
(r⊥ ≈ 0), where the self consistent potential rises rapidly
from zero to ≈µ. For the case of moderate numbers of
particles, the semiclassical description of the vortex core
could be improved by considering higher � corrections to
the TF solution, which take into account the gradients of
the potential. However, we should remember that the �

or gradient expansion is an asymptotic series which can
only work as long as the gradients of the potential are not
too strong, even though the theory often works quite far
beyond its limits (see Ref. [29]). For very steep potentials
only a partial resummation of the � series like in WKB,
to account for the nonanalytical behavior in �, can help.
This will further be discussed in Appendix.
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Fig. 4. Same as Figure 2, but for 106 atoms in the trap.

0

20

40

60

0 2 4 6 8 10

V
ex

t +
 g

 ρ
   

  (
- hω

)

r⊥     (aHO)

N = 102

N = 104

N = 106

Fig. 5. Self-consistent potentials in units of �ω as a function
of r⊥ in units of aHO obtained in our (� → 0) TF approach
corresponding to the density profiles shown in Figures 2–4.

As can be seen in Figures 3 and 4, for large numbers of
particles the density profiles obtained from equation (30)
follow remarkably well the quantal profile except near the
classical turning point where the approach breaks down.

Comparing the so-called N → ∞ TF approach
[Eq. (26)] with the � → 0 TF approach proposed in this
work, one can see from Table 1 that our TF method re-
produces better the different quantal contributions to the
energy of the vortex state for small (N = 100) and mod-
erate (N = 104) numbers of particles in the condensate
while, for large numbers both limits (� → 0 and N → ∞)
coincide. Concerning the density profiles, the difference
is obvious: in our approach the density profile goes like√

ρ ∝ rκ
⊥ as in the quantal case, whereas in the N → ∞

TF limit there is a small ρ = 0 region determined by the
inner turning point r⊥min. It should be mentioned that
within the improved (matched asymptotics) N → ∞ ap-
proximation [Eq. (30)], the density profile also goes like√

ρ ∝ rκ
⊥ , and contrary to our � → 0 approach it is capa-

ble to reproduce the density profile in the vortex core in
the case of large N . However, this method has nothing to
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do with the semiclassical asymptotic � expansion consid-
ered here.

Finally it should also be pointed out that our TF limit
is able to deal with vortices in the attractive case (nega-
tive scattering length). In this case the kinetic energy is
crucial and the large-N limit is not well-defined. The same
is true for the description of the ground state (i.e., no vor-
tex), as shown in reference [15]. There the � → 0 approach
has been used in the repulsive as well as in the attractive
case, whereas the N → ∞ approximations (the so-called
N → ∞ TF limit as well as the method of matched asymp-
totics) can be applied only in the repulsive case.

4 Application to vortices in superfluid
trapped fermionic gases

In this section we will describe how our TF approach
can also be used for the description of vortices in super-
fluid fermionic systems. This is possible since at least for
a certain range of temperatures, the so-called Ginzburg-
Landau regime, the order parameter ∆(r) is described
by an equation which has exactly the same form as the
GPE (2). As derived in reference [24], for temperatures T
near the critical temperature Tc and for low trapping fre-
quencies ω (�ω  kBTc) the Ginzburg-Landau equation
(GLE) reads[
−K2R2

TF∇2 +
1 + 2λ

2λ

r2

R2
TF

− ln
T

(0)
c

T

]
∆(r)

+
7ζ(3)
8π2

∣∣∣∣∆(r)
kBT

∣∣∣∣
2

∆(r) = 0, (33)

with the definitions K =
√

7ζ(3)/(48π2) �ω/(kBT ), λ =
2kF |a|/π, and RTF = �kF /(mω), where kF denotes the
local Fermi momentum at the center of the trap. The tem-
perature T

(0)
c is the critical temperature of a homogeneous

system having the same density as the trapped system has
at the center. It is given by T

(0)
c = (8e−2γ/π)εF e−1/λ [36],

with γ ≈ 1.781 and εF = �
2k2

F /(2m).
It is convenient to rewrite equation (33) in terms of

dimensionless quantities. To that end we define

r̃ =
(

1
K

)1/2 (
1 +

1
2λ

)1/4 r
RTF

, (34)

g̃ =
7ζ(3)
16π2

1
K

(
2λ

1 + 2λ

)1/2

, (35)

µ̃ =
1

2K

(
2λ

1 + 2λ

)1/2

ln
T

(0)
c

T
, (36)

Φ̃ =
∆

kBT
· (37)

With these definitions, equation (33) becomes(
−1

2
∇̃2 +

1
2
r̃2 + g̃|Φ̃(r̃)|2

)
Φ̃(r̃) = µ̃Φ̃(r̃) , (38)

which is the same as the GPE rewritten in HO units,
i.e., with the replacements r/aHO → r̃, g/(�ωa3

HO) → g̃,
and φa

3/2
HO → φ̃.

However, there is one important difference between
the GPE describing the Bose-Einstein condensate and the
GLE describing the order parameter ∆(r) of a superfluid
Fermi system. In a Bose-Einstein condensate, the particle
number N , i.e., the norm of Φ̃, is fixed, and the chemi-
cal potential µ̃ has to be determined from the GPE (38).
For the GLE the situation is reversed: the chemical po-
tential µ̃ is fixed by the temperature T and other pa-
rameters [Eq. (36)], whereas the normalization of Φ̃, i.e.,
the magnitude of the gap ∆, has to be determined from
equation (38).

The lowest possible value of µ̃, for which a solution
of the GLE (38) can be found, corresponds to the case
that the normalization N goes to zero, such that the non-
linear term can be neglected. In this case equation (38)
reduces to the Schrödinger equation of the non-interacting
harmonic oscillator with the lowest eigenvalue µ̃min = 3/2.
This gives an upper limit for T/T

(0)
c , which was used in

reference [24] to estimate the critical temperature Tc of
the trapped Fermi system.

In this article we are interested in vortex states, i.e.,
in solutions of the form (1). In the framework of the GL
theory, vortex states of superfluid Fermi systems are dis-
cussed in reference [25], where the GLE (38) is solved for
a two-dimensional geometry, i.e., φ(r⊥ , z) ≡ φ(r⊥ ), corre-
sponding to a trap with an extremely elongated potential.
In two dimensions the lowest possible value of µ̃, for which
vortex solutions can be found, is given by µ2d

min = 1 + κ.
However, as in our discussion of vortex states in Bose-
Einstein condensates, we will consider the spherical case,
in which the maximum temperature for the existence of
vortex states is determined by µ̃min = 3/2 + κ.

Since the GLE is identical with the GPE, it is obvi-
ous that our TF approach described in the previous sec-
tions can immediately be applied also to the GLE. Only
the iteration procedure for the self-consistent solution is
somewhat different, since now µ̃ is given instead of N . We
start with some guess for Ncκ and calculate the integrated
level density, equation (22). Now, if N I

κ < NHO
κ , the value

of Ncκ is increased, otherwise it is decreased. This proce-
dure is iterated until N I

κ = NHO
κ . Due to this quantiza-

tion rule it is clear that ∆ goes to zero when the temper-
ature approaches the critical temperature corresponding
to µ̃ = 3/2 + κ.

We are now going to compare the results of our TF
approach with the fully quantal solution of equation (38).
The parameters used for our calculations are taken from
reference [22], i.e., we consider N6Li = 573 000 6Li atoms
(scattering length a = −2160 a0) in a trap with ω =
2π × 144 Hz. The self-consistent mean-field potential of
the cloud has been neglected in the derivation of the
GLE (33) in reference [24], but we take it into account
in an approximate way by replacing the external trap-
ping frequency ω by a higher one, ωeff = 2π × 170 Hz,
as it has been done, e.g., in reference [23]. The parame-
ters RTF and T

(0)
c are obtained from εF = (3N6Li)1/3

�ωeff
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Fig. 6. Order parameter ∆ of a superfluid trapped Fermi gas
in a vortex state with κ = 1 as a function of r⊥ for z = 0. The
parameters were chosen corresponding to 573 000 6Li atoms in
a spherical trap with ω = 2π×144 Hz. The order parameter ∆
is given in units of kBTc (Tc = 31.2 nK), the radius r⊥ in units
of RTF (RTF = 48.7 µm). Solid lines result from the numerical
solution of the GLE (33), whereas the dashed lines are obtained
within the (� → 0) TF approach. The three pairs of curves
correspond to three different temperatures (from bottom to
top: 0.85Tc, 0.8Tc, and 0.75Tc).

and the relations given below equation (33), with the re-
sult RTF = 48.7 µm and T

(0)
c = 36.7 nK. The temperature

corresponding to µ̃ = 3/2, i.e., the critical temperature of
the trapped system, is Tc = 31.2 nK.

In Figure 6 we show the order parameter ∆ obtained
from the numerical solution of equation (33) (solid lines).
For the parameters listed above, the lowest temperature
for which vortex states can exist, i.e., the temperature
for which µ̃ = 5/2, is approximately 0.86Tc. Therefore we
display the order parameter only for temperatures below
this value, namely for T/Tc = 0.85, 0.8, and 0.75. For
T/Tc = 0.85 the order parameter is still very small, and
it increases rapidly as the temperature decreases. As can
be seen in Figure 6, in all three cases the “amplitude” of
the order parameter and the position of the maximum are
well reproduced by our TF approximation. Note that also
the vortex core is well described.

As already stated, our TF solution has to be inter-
preted in terms of distributions, and then the agreement
is even better than it seems from Figure 6 if one looks at
integrated quantities. As an example we consider the nor-
malization N =

∫
d3r̃|φ̃(r̃)|2. For the three temperatures

mentioned above, the normalizations obtained from the
numerical solution of the GLE and those corresponding to
our TF approximation are in good agreement, as shown in
Table 2. As a more meaningful example for an integrated
quantity let us look at the GL free energy FGL. The ex-
plicit expression for the functional FGL[∆] is given in refer-
ence [24]. Following this reference, we retain only the lead-
ing terms in the small quantities K, r/RTF, ln(T (0)

c /T ),
and ∆/(kBTc). Then, after integration by parts, the GL

Table 2. Normalization N of the order parameter and GL
free energy FGL for the parameters used in Figure 6, obtained
from the numerical solution of the GLE and from our (� → 0)
TF approximation.

T/Tc N FGL (µK)

GLE 2.12 −0.0079
0.85

� → 0 2.37 −0.0088

GLE 16.37 −0.391
0.8

� → 0 18.41 −0.440

GLE 34.18 −1.44
0.75

� → 0 38.20 −1.61

free energy functional becomes

FGL[∆] =
mkF

2π2�2

∫
d3r

{
− K2R2

TF∆∗∇2∆

+

[(
1
2λ

+ 1
)

r2

R2
TF

− ln
T

(0)
c

T

]
|∆|2+

7ζ(3)
16π2

1
(kBT )2

|∆|4
}

.

(39)

In the TF approach, the first term (∝ ∆∗∇2∆) cannot
be obtained directly from the TF approximation for ∆(r),
but it rather has to be calculated analogous to the kinetic
energy density in equation (17). As a consequence, most
of the terms cancel, as it is the case if ∆(r) is the exact
solution of the GLE (33), and only the last term (∝ |∆|4)
survives, but with negative sign. Thus, for the TF approx-
imation as well as for the exact solution of the GLE, we
can write in terms of the dimensionless variables defined
above

FGL =
4ε2F (kBT )2

π2(�ω)3
K5/2

(
2λ

1 + 2λ

)1/4 ∫
d3r̃

(
− g̃

2
|Φ̃|4

)
.

(40)
Results for FGL obtained from the numerical solution of
equation (33) and from the TF solution are listed in Ta-
ble 2. The agreement is as good as for the normaliza-
tions N . In fact, the deviations are mainly due to the
different normalizations, i.e., the ratio FGL/N obtained
from the TF approximation is very close to the exact one.

To conclude this section, we stress that in the range
of validity of the GLE the “chemical potential” µ̃ must
not become large. This is the reason for the rather small
normalizations of the order parameter and results in a
shape of the order parameter as a function of r which
resembles very much the shape of a non-interacting HO
wave function. Under these conditions it is clear that the
N → ∞ limit cannot be used as an approximate solution
of the GLE, as has also been noted in reference [25].

5 Summary and conclusions

Using the semiclassical Thomas-Fermi approximation un-
derstood as � → 0 limit rather than N → ∞ limit,
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we have studied the vortex states of a Bose condensate
of atoms confined in a spherical magnetic trap.

We started analyzing the vortex states in a non-
interacting trapped Bose gas. Due to the symmetry of the
problem, we have obtained first the Thomas-Fermi density
projected on states of defined Lz. In this non-interacting
case the density is normalized by adjusting the normal-
ization constant cκ, and the chemical potential µ is fixed,
according to the WKB quantization rule, to the quantal
eigenvalue of the quantum state.

In the interacting case the normalization constant and
the chemical potential are fixed to normalize the Thomas-
Fermi density to the number of particles and that the
integrated level density become equal to that of the non-
interacting case. For particle numbers where the kinetic
energy coming from the radial and axial motion is a non-
negligible part of the total kinetic energy, our Thomas-
Fermi approach, understood as � → 0 limit, yields very
satisfying results as compared with the corresponding
quantal values. For a very large number of particles in
the condensate, the small Thomas-Fermi kinetic energy,
obtained in our approach, is smaller than the quantal ki-
netic energy, which, for large number of particles, is also
dominated by quantal corrections as it happens for the
ground state [15].

The vortex state density profiles obtained in our
Thomas-Fermi approximation reproduce quite well the
quantal ones, especially for a very large number of par-
ticles. However, inside the vortex core our Thomas-Fermi
densities are too high. Also near the classical turning point
our TF densities locally fail because at this point the
density is completely dominated by quantal contributions
which are non-analytical in � and which cannot be re-
produced by semiclassical approximations of the TF type.
However, it shall be kept in mind that the semiclassical
density has to be understood as distribution very efficient
for describing expectation values rather than local quan-
tities such as the density profile. In this sense we see that
the quantities presented in Table 1 are much more accu-
rate than one would expect from an inspection of the local
densities shown in Figures 2–4.

The approach is also well suited for the description
of vortex states of superfluid trapped fermionic systems
in the GL regime, where the various approximations de-
veloped for large N cannot be used at all. It should be
mentioned that the conditions for the validity of the GLE
imply that the parameters of the equivalent GPE always
correspond to a rather small number of particles. In this
case the normalization of the order parameter (see Tab. 2)
and the position of the maximum are well reproduced by
the � → 0 limit as compared with numerical solutions of
the GLE. Also the vortex-core region is well described in
this case.
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One of us (M.U.) acknowledges support by the Alexander von
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X.V. acknowledges financial support from DGI and FEDER

(Spain) under grant BFM2002-01868, from DGR (Catalonia)
under grant 2001SGR-00064, and from the CICYT-IN2P3
collaboration.

Appendix: Large-N limit for vortex states

In order to discuss the large-N limit for vortex states more
thoroughly, we start from equation (30), which, as shown
in Figure 4, becomes very accurate in the limit of large N .
Let us look at the different contributions to the kinetic
energy, erot and ekin. In the infinite system, the energies
per unit length, dErot/dz and dEkin/dz can easily be ob-
tained from the numerical solution for fκ. Since dErot/dz
diverges logarithmically, the corresponding integral has to
be cut off at some radius R [35]. For κ = 1 the results
read (R � ξ0):

dErot

dz
=

π�
2ρ0

m

(
ln

R

ξ0
− 0.40

)
, (41)

dEkin

dz
= 0.28

π�
2ρ0

m
· (42)

In complete analogy to the derivation of the total energy
of a vortex in a trapped system in reference [37], one can
use these results to obtain explicit expressions for the rota-
tional and radial kinetic energies of a vortex, erot and ecore

kin ,
which for a spherical trapping potential read

erot =
1
N

4πρ0

3
�

2

m
rmax

(
ln

rmax

ξ0
− 1.18

)
, (43)

ecore
kin = 0.28

1
N

4πρ0

3
�

2

m
rmax. (44)

Here rmax =
√

2µ/(mω2) is the radius of the condensate.
However, the kinetic energy has also another contribu-
tion etrap

kin due to the finite size of the trapped system.
Since outside the vortex core the shape of the condensate
is almost not changed, we assume that for this contri-
bution the relation derived in reference [38] for the case
without vortex, remains valid:

etrap
kin =

5
2

�
2

mr2
max

(
ln

rmax

aHO
− 0.26

)
. (45)

Since the volume of the vortex core is negligible in the
limit N → ∞, µ depends on N in the same way as in the
large-N limit for the ground state,

µ =
�ω

2

(
15Na

aHO

)2/5

· (46)

Using this, we finally obtain

erot = �ω
( aHO

15Na

)2/5
(

ln
15Na

aHO
− 2.95

)
, (47)

ekin = �ω
( aHO

15Na

)2/5
(

1
2

ln
15Na

aHO
− 0.51

)
. (48)

From these equations we conclude that the ratio ekin/erot

does not go to zero, but approaches 1/2 for N → ∞.
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Hence, neglecting the radial and axial parts of the kinetic
energy, but retaining the rotational part, as it is done in
the literature [10,11,16,17], is not justified and does not
correspond to the proper N → ∞ limit. Instead, the cor-
rect large-N limit is given by equation (30), except at
the surface of the condensate. The latter can be approxi-
mated, e.g., by the exact solution of the GPE for a linear
potential, as it has been done in reference [38] in order to
derive equation (45), and also in reference [37].

It should, however, be noted that equations (30, 45)
correspond to a partial resummation to all orders in � as
demonstrates the nonanalytical dependence on � of these
quantities. Such resummation techniques, also encoun-
tered in the WKB approximation, are necessary when-
ever the asymptotic Wigner-Kirkwood � expansion breaks
down. This is always the case when the gradients of the po-
tential start to diverge like in the vortex core for N → ∞,
see Figure 5.
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